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ABSTRACT
The presented paper deals with a problem of fuel consump-
tion optimization. Today’s automotive industry solves this
problem mainly via various conceptual approaches (hybrid
and electric vehicles). However, it leads to high initial cost
of a vehicle. This paper focuses on fuel economy for con-
ventional vehicles. For this aim, recursive algorithms of
adaptive optimal quadratic control under Bayesian method-
ology are used. A stochastic servo problem, including set-
point tracking, is a part of the considered adaptive con-
trol design. In this paper, fuel consumption and speed of
a driven vehicle are the controlled variables, where the first
one is to be optimized and the second one is pushed to
track its set-point. This set-point is a recommended road-
dependent speed. Experiments with real data measured on
a driven vehicle are provided.
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1 Introduction

A problem of fuel economy is of importance to today’s au-
tomotive industry, as well as for usual drivers. A necessity
to reduce fuel consumption and emissions forces the auto-
motive industry to call for solutions aimed at optimization
of ride. Conceptual approaches such as hybrid and electric
vehicles came to the market recently. Their potential and
positive effect on environment are surely significant. Many
efforts are focused on developing optimal control strategies
for them, see, for example, [1, 2].

However, the resulting fuel savings are compensated
by high initial cost of vehicles. Moreover, in case of electric
vehicles a long out-of-town traveling is still a problem due
to the lack of charging stations.

Another way of emission regulation was proposed at
a government level in the form of using biofuel and bioad-
ditives. It was expected that it could bring environmental
and economical savings. However, in fact, it turned out that
biofuel may damage an engine originally not intended for
its using. Moreover, consumption of biofuel and fuel with
bioadditives is higher than in case of the traditional fuel.

Facts mentioned above suggest that optimization of
fuel consumption for conventional vehicles, which is con-

sidered in this paper, still remains desirable from economic
and environmental points of view. Many works can be
found in this field. For instance, [3] deals with driving
strategies based on prediction of urban traffic situations.
The main idea is to reduce the dynamics in the velocity
profiles of driving situations and, respectively, the fuel con-
sumption in urban traffic. Reducing the velocity dynamics
is proposed via a situation-adaptive reaction to every pre-
dictively known forthcoming traffic event. The proposed
algorithm calculates a fuel consumption optimized driving
trajectory at each route section of the vehicle provided that
predictive information about the traffic events is available.
Used input parameters are temporal and spatial depending
constraints of the driving situation as well as other restric-
tions like a speed-limit. Paper [4] is devoted to modeling an
eco-driving strategy of a vehicle based on minimization of
fuel consumption in a given route. The vehicle speed and
the gear ratio are identified as control variables. The ef-
fect of working load is considered according to three engine
running processes of idle, part-load and wide open throttle.

The presented paper proposes to solve the task of fuel
consumption optimization as a stochastic servo problem
within the adaptive control design. The aim of the con-
sidered control is to push the controlled variables as close
as possible to their specified set-points under constraints
on the input ranges. The used approach is based on data
continuously measured on a driven vehicle and on exter-
nal observations. The main controlled variable here are the
fuel consumption and the speed of a driven vehicle. Keep-
ing of the recommended road-dependent speed, which can
be neither too slow nor too fast, is closely connected with
the fuel consumption optimization. Control variables used
– pressing the gas and the brake pedals and selected gear of
transmission – naturally have restrictions exploited in the
control design.

In the presented paper, dynamic driving-related vari-
ables are modeled via the fully probabilistic design (FPD)
[5] under Bayesian methodology [6]. It allows to use the
FPD recursive (on-line) algorithms based on explicit so-
lutions. Thus, numerical computations are avoided as far
as possible. For multivariate linear normal autoregression
model the FPD coincides with the adaptive quadratic opti-
mal control [7]. Minimization of the fuel consumption un-
der condition of tracking the prescribed speed is performed
using adaptive penalizations in criteria of the control algo-



rithm.
Layout of the paper is as follows: Section 2 provides

general solution to servo problem within the FPD. Section
3 demonstrates its exploitation with normal autoregression
models. Section 4 is devoted to application of the solution
to the recommended speed tracking within a task of the fuel
consumption optimization. Section 5 demonstrates results
of experiments with real data measured on a driven vehicle.

2 Servo Problem Formulation

This section describes general solution of servo problem
within the FPD. Advantages of the FPD’s use in compar-
ison with other approaches are described in [8], here they
are omitted to save space.

Let’s consider a stochastic closed loop described by
the joint probability density function (pdf) f(d{T}) =∏
t∈t∗ f(dt|d{t− 1}), where

• d{t} denotes the sequence (d0, d1, . . . , dt), where
d0 ≡ d{0} comprises initial conditions;

• data dt ≡ (yt, ut), where yt is the observed output
vector and ut is the control input vector;

• t labels discrete time, t ∈ t∗ ≡ {1, . . . , T};

• T <∞ is the control horizon;

• and f(·|·) represents a conditional pdf.

This joint pdf, describing the closed loop, is factorized into
a product of a system model f(yt|ut, d{t− 1}) and a con-
troller f(ut|d{t− 1}) in the following way

f(d{T}) =
∏
t∈t∗

f(yt|ut, d{t− 1})︸ ︷︷ ︸
system model

f(ut|d{t− 1})︸ ︷︷ ︸
controller

(1)

according to the chain rule [9]. The system model
f(yt|ut, d{t− 1}) has a form

f(yt|ut, d{t− 1}) = f(yt|ψt), ψt ≡ [u′t, φ
′
t−1]

′, (2)

where ψt is the regression vector, and φt−1 is a finite-
dimensional information state.

In the presented paper, all the pdfs (including con-
trollers) are considered in a factorized form, i.e.,

f(yt|ψt) =
Y∏
i=1

f(yi;t|y(i+1);t, . . . , yY ;t, ψt), (3)

where a notation of the form yi;t means the ith entry of yt,
Y denotes the length of the vector yt. Formal decomposi-
tion into a product of factors generally helps in designing
and applying the resulting algorithms as all the factors are
scalar pdfs of respective distributions. It means that all the
subsequent discussed formulas are assumed to be in the fac-
torized form, though formally written in the unfactorized
one.

The controller using the same information state, i.e.,
f(ut|d{t−1}) = f(ut|φt−1), t ∈ t∗, is the optimized term
of the joint pdf (1). It means that the optimizing control de-
sign should select the controller, which forces the joint pdf
(1) as close as possible to a user given ideal pdf f I(d{T}).
This ideal pdf describes a desired closed loop. It is decom-
posed into a product of the ideal system model and the ideal
controller similarly as (1), and not forgetting about (3), i.e.,

f I(d{T}) =
∏
t∈t∗

f I(yt|ψt)︸ ︷︷ ︸
ideal system model

× f I(ut|φt−1).︸ ︷︷ ︸
ideal controller

(4)
The Kullback-Leibler divergence (KLD) [10]

D(f ||f I) ≡
∫
f(d{T}) ln

(
f(d{T})
f I(d{T})

)
dd{T} (5)

is a suitable tool to measure proximity between (1) and (4),
which is minimized over {f(ut|φt−1)}Tt=1. Reasoning of
such a choice can be found in [6].

A considered servo problem can be formulated as
follows: design the control inputs ut so that to push the
controlled outputs yt as close as possible to their desired
(given) set-points yst .

2.1 Ideal Pdf Construction

The ideal system model entering (4) is constructed using
the given set-points yst , i.e., it takes the form

f I(yt|ψt, yst ). (6)

The ideal controller f I(ut|φt−1) can be modeled as a ran-
dom walk.

2.2 Optimal Controller Construction

According to [6], the optimal controller minimizing KLD
(5) is constructed as follows:

f(ut|φt−1) =
f I(ut|φt−1) exp [−ω(ψt)]∫
f I(ut|φt−1) exp [−ω(ψt)]dut︸ ︷︷ ︸

γ(φt−1)

, t ∈ t∗,

ω(ψt) ≡
∫
f(yt|ψt) ln

(
f(yt|ψt)

γ(φt)f I(yt|ψt, yst )

)
dyt. (7)

Evaluations run against the time course, i.e., for t =
T, . . . , 1 and start with γ(φT ) = 1. Proof of this statement
is available in [6].

3 Servo Problem for Normal Models

In case of linear normal autoregression models, the FPD
coincides with a widely spread quadratically optimal con-
trol [6], where penalizations in the squares of variables in
the optimality criteria are the main control options. These



penalizations are taken as the inversions of the noise vari-
ances of the corresponding factors of the joint (factorized)
pdf.

3.1 Normal Autoregression Closed Loop Model

In this case, the system model (2) in the closed loop (1)
takes a form of the multivariate normal autoregression
model

f(yt|ψt) = Ny(ψ′tθ, r), (8)

where θ are regression coefficients and r are the noise vari-
ances of factors (they are estimated at each step of the time
cycle, but for the controls aims they are taken as fixed). The
optimized controller (7)

f(ut|φt−1) = Nu(η, s) (9)

is a part of the closed loop (1) obtained via minimization
of KLD, also in the normal form with expectations η and
variances s.

3.2 Normal Autoregression Ideal Closed Loop Model

Structurally, the ideal closed loop model stems from the
considered closed loop, however, its individual factors
should express the control aims.

3.2.1 Ideal System Model

Entries of the output vector yt = [y1;t, . . . , yY ;t]′ must
track their set-points collected into a vector yst =
[ys1;t, . . . , y

s
Y ;t]
′. Thus, the ideal system model (6) can be

chosen, e.g., as the first order autoregression model

f I(yt|ψt, yst ) = N I
y (yst , R) (10)

with some relatively quick dynamics and constant. Using
the factorized form, it can be written as

yi;t = aiyi;t−1 + ki + ei;t, (11)

where parameter ai provides the dynamics, and constant ki
is set so that the steady-state value of the output entry yi;t is
the corresponding value of the set-point ysi;t. It means that
according to the set-point, the constant is obtained as

ki = ysi;t(1− ai). (12)

The ideal system model noise ei;t in (11) expresses the ex-
pected deviations of the ideal values from those produced
by the deterministic model. Inversions of their correspond-
ing variances R form penalizations in the quadratic control
criterion.

3.2.2 Ideal Controller

Entries of the input vector ut = [u1;t, . . . , uU ;t]′ can be
also “dragged” up to their desired given values. It means
that set-points can be defined for the input values as well,
and they are collected in a vector ust = [us1;t, . . . , u

s
U ;t]
′. In

this case, the ideal controller takes the form

f I(ut|φt−1, u
s
t ) = Nu(ust , S) (13)

and can be chosen as a static model for respective factors

ui;t = usi;t + εi;t, (14)

or in the form of random walk, operating with the input
increments

ui;t − ui;t−1 = εi;t (15)

with the set-point usi;t = 0. The chosen ideal controller
((14) or (15)) generates the input values, where inversions
of the noise variances S correspond to the inputs penaliza-
tions in the control criterion in the case of (14) or to the
input increments penalizations with the use of (15).

3.3 Optimized Controller

Under assumption of normality and using the discussed
models (8), (10) and (13), the optimized controller
f(ut|φt−1) (9) minimizes KLD (5) over all admissible con-
trol strategies {f(ut|φt−1)}Tt=1. This formulation leads to
the dynamic programming with penalizations of the corre-
sponding factors, resulting in distribution (9), where η are
expectations used as the generated inputs.

Up to now, the control based on a model with known
parameters was discussed. In reality, the model parame-
ters are not known and have to be estimated. According to
[11], the dual problem is not feasible. This suggests some
suboptimal solution to the adaptive control to be used.

For the control implementation, a methodology of re-
ceding horizon [6] can be used, where the newly computed
point estimates of parameters are used as fixed for the con-
trol design on a given control interval. After realization
of one step of control, new data are measured and used for
another estimation. The mentioned estimation is performed
on-line for the closed loop model including (8) and (9). The
ideal system model (10) and the ideal controller (13) are
fixed with the exception of the noise variances which are
taken from the mentioned closed loop estimation, i.e., in
(10) R = r from (8), and in (13) S = s from (9). Thus, the
required penalizations in the control criteria become adap-
tive. The IST (iterations spread in time) method is recom-
mended, where the repeated solutions to the Riccati equa-
tion do not start from initial conditions but from the result
achieved in the previous step [7]. Due to this, a very short
control interval can be used.



4 Fuel Consumption Optimization

Let us apply the described servo problem solution to a task
of fuel consumption optimization with involved tracking of
the recommended speed.

Obviously, the main control aim for this task is to de-
sign values of the control variables so that to minimize the
controlled one – the fuel consumption. However, a simple
minimization is not sufficient for solution to the task as it
leads to reducing the vehicle speed. This is intuitively un-
derstandable: a parked vehicle has a zero fuel consumption.
However, a driver wants to get to some destination, and a
vehicle should move with some speed not exceeding the
existing restrictions. Thus, the vehicle speed should track
its recommended values. It means that the recommended
speed should be neither too fast (according to traffic rules)
nor too slow (for safety, for example, on the highway). Bal-
ance of these generally contradictory demands creates the
optimum of the considered problem.

4.1 “Driver-Vehicle” Closed Loop

Let us consider a “driver-vehicle” closed loop that is de-
scribed by model (1). The involved modeled variables
dt ≡ (yt, ut) entering the considered closed loop are in-
terpreted as follows:

• the controlled output vector yt ≡ [y1;t, y2;t], where

– y1;t denotes the fuel consumption, and

– y2;t corresponds to the vehicle speed;

• the control input vector ut ≡ [u1;t, u2;t, u3;t], where

– u1;t is a pressing the gas pedal,

– u2;t is a pressing the brake pedal, and

– u3;t is a selected gear of transmission.

The external variable vt – a road altitude – must be added
to the closed loop description. Thus, model (1) modifies its
form to the following one:∏

t∈t∗
f(yt|ut, vt, φt−1)f(ut|vt, φt−1) (16)

to be used in the factorized form similar to (3).
In general, more modeled variables can be added to

the output vector (such as engine speed, engine torque,
lateral acceleration, etc.) and to the input vector (rotat-
ing steering wheel, etc.) as well as to the vector of ex-
ternal variables (distance travelled, time travelled, informa-
tion about a vehicle position from the GPS navigation, etc.).
But these variables are not to be optimized, and in this sec-
tion they are omitted for more transparent formulation of
the problem. More detailed information about modeling
and experiments with the mentioned variables included is
available in [12].

4.2 Servo Problem

Adapted to the considered context, the servo problem is
now formulated in the following way:

• design the values u1;t expressing how much the gas
pedal should be pressed, the values u2;t related to
pressing the brake pedal and the values u3;t defining
a gear to be selected so that to

• push the fuel consumption y1;t towards its set-point
ys1;t = 0 and the vehicle speed y2;t as close as possible
to the recommended speed ys2;t;

• and, in the same time, the designed values u1;t, u2;t

and u3;t must be close to their given desired values
us1;t, u

s
2;t and us3;t respectively.

4.3 Set-point Choice

It can be seen in the above formulation that the chosen
set-point ys1;t for the controlled fuel consumption is a zero
value. As regards the recommended speed y2;t, its model-
ing is a separate subtask. In a case of an unknown road,
the recommended speed must be estimated at each time
instant with the help of the information obtained from a
navigation. For a known road, the prescribed speed can
be determined by investigation of a detailed map of the re-
gion and assigning the speed values according to experts
from the transportation area. At the present time, the re-
search project focuses on the case with a known road and
the available prescribed speed. A case with modeling and
estimation of the recommended speed for unknown route
will be treated soon.

The set-points us1;t, u
s
2;t and us3;t are mostly obtained

from preliminary measurements or with the help of experts.

4.4 Ideal “Driver-Vehicle” Closed Loop

The ideal closed loop (4) can be constructed as follows.
The ideal system model (10) entering the ideal closed loop
is defined for the corresponding factors according to Sec-
tion 3.2.1 via the given set-points: zero for the fuel con-
sumption and the prescribed recommended speed – for the
vehicle speed.

The ideal controller (13) is constructed according to
Section 3.2.2 mostly using the static model (14) with the
given desired values of corresponding entries. Moreover,
values of pressing the gas pedal and the brake pedal and of
the gear of transmission naturally have upper and lower re-
strictions which have to be imposed during the implemen-
tation.

4.5 KLD Minimization

Minimization of KLD (5) in the adopted context is inter-
preted as follows. The optimal controller moves the con-
sidered “driver-vehicle” closed loop as close as possible to



its ideal counterpart, while deviations from desired values
of the optimized variables (fuel consumption and the vehi-
cle speed) are penalized in each control step. Here, penal-
izations are used for the input deviations as well.

The penalizations obtained as inversions of the esti-
mated variances r from (8) and s from (9) are adaptive
and are set automatically. Their choice differs significantly
from usually used constant penalizations manually chosen
by experts. Results of experiments comparing reducing the
fuel consumption with the tracked speed both for the adap-
tive and constant penalizations are provided below.

5 Experiments

A part of the early experiments aimed at the fuel consump-
tion optimization within the presented research is published
in [12]. However, a problem of tracking the speed and
“dragging” the values up to the desired ones remained not
fully resolved there. Subsequently, a series of experiments
based on the described approach with the aim to improve a
control quality and resolve the tracking problem have been
conducted. Here, one of them with the best results achieved
is presented.

The experimental part of the work is carried out
in collaboration with Škoda Auto a.s. (see www.skoda-
auto.com) which provided real observations. To ensure
necessary dynamic, data were measured for driving both
with a lower and a usual fuel consumption. Originally,
the available measurements contained significant number
of variables measured for a selected out-of-town route. A
basic data sample including 16 most important variables in-
fluencing the driving was selected for modeling the closed
loop (i.e., fuel consumption [µl], average rear wheels speed
[km/h], pressing the gas pedal [%], pressing the brake
pedal [bar], gear of transmission, engine torque [Nm], etc.)
Their complete list is available in [12]. For the consid-
ered formulation of the servo problem, the best results were
achieved with the choice of the variables described in Sec-
tion 4 extended by the engine torque.

5.1 Experiment Setup

For the presented experiment, the following output vec-
tor is taken: yt = [y1;t, y2;t, y3;t]′, where y1;t is the fuel
consumption, y2;t – average rear wheels speed (identified
with the vehicle’s speed), y3;t – engine torque. The in-
put vector remains the same as in Section 4, i.e., ut =
[u1;t, u2;t, u3;t]′, where u1;t – pressing the gas pedal, u2;t

– pressing the brake pedal, u3;t – selected gear of trans-
mission. Constraints 0÷ 100% are imposed both on press-
ing the gas pedal and the brake pedal. Restrictions 0 ÷ 6
are chosen for gear, where a zero value is identified with a
neutral gear. The external variable vt is a road altitude.

After the data preprocessing the whole available num-
ber of data items was about 20 thousands with a sampling
period equal to 1 second. For this experiment, 5000 data

items were used. An additional amount of data items seems
not to improve a quality of control and estimation, but it
prolongs the computational time.

Usually in practice, the penalizations in the control
criterion are used as fixed and chosen manually by experts.
Therefore, for comparison, the algorithm was running: (i)
with automatic setting of the adaptive penalizations; (ii)
with manual setting of the fixed penalizations chosen by
experts; and (iii) with manual setting of the fixed penaliza-
tions taken from the stabilized values of the adaptive ones.
Results of the control with a different choice of penaliza-
tions are compared.

5.2 Results

5.2.1 Automatic Setting of the Adaptive Penalizations

Figure 1 demonstrates reducing the fuel consumption ob-
tained using the FPD with the adaptive penalizations. For
better illustration a fragment of results for 1000 data items
is shown (at the beginning of the time cycle the results of
the on-line algorithm were worse). The fuel economy in
comparison with the real lower consumption is 14.29%.
Such the fuel saving was obtained with the control inputs,
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Figure 1. The fuel consumption obtained using the FPD
with adaptive penalizations. Notice a difference between
the obtained and the real fuel consumptions: the first one
has lower values.

i.e., pressing the gas pedal and gear, plotted in Figure 2
(top) and (bottom) respectively. This figure compares them
with their real courses. It can be seen in Figure 2 that the
computed inputs correspond to the real values with a bit
lower pressing the gas pedal and a higher gear that is in ac-
cordance with general rules of fuel economy. Pressing the
brake pedal is not shown here, as during the available rides
a braking was realized mostly by the engine. The obtained
engine torque corresponds to the real one (it is not shown
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Figure 2. Pressing the gas pedal (top) and the selected gear
(bottom), obtained via the FPD with the adaptive penali-
zations, compared with real courses of these inputs. No-
tice a smoother pressing the gas pedal in the top plot and a
higher selected gear in the bottom plot.

here to save space). This quite suffices for the considered
task.

Figure 3 presents the evolutions of the adaptive
penalizations of the fuel consumption, the speed, press-
ing the gas pedal and gear respectively. This figure shows
how the penalizations are modifying before they find their
correct values. Their stabilized values are as follows:
1.318 × 10−4 for the fuel consumption, 2.852 – for the
vehicle speed, 0.029 – for the engine torque, 0.047 – for
pressing the gas pedal, 2.196 – for the gear. It can be seen
that such a choice is non-trivial, and manually it would be
a difficult task even with a help of experts.

The recommended speed tracking is shown in
Figure 4, where the controlled speed is lower than the set-
point. Table 1 provides comparison of the average con-
trolled speed and the average recommended speed.
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Figure 3. Evolutions of the adaptive penalizations. Notice
the changes of the values in the beginning of the time cycle.

5.2.2 Manual Setting of the Expert-Chosen Fixed
Penalizations

For comparison, the algorithm was run with the fixed (con-
stant) penalizations, namely, 0.1 for the fuel consumption,
1 – for the vehicle speed, 0.1 – for the engine torque, 0.1
– for pressing the gas pedal, 0.1 – for the gear. This was
a modification of a widespread expert-based choice of the
constant penalizations (i.e., using inversions of variances 1
for the outputs and variances 10 for the inputs), which was
tuned to the considered specific task. However, despite this
tuning, the fuel consumption in this case increased by 16%
in comparison with real data, see Figure 5.

Figure 6 presents the controlled vehicle speed exceed-
ing the recommended one that could be dangerous. It was
caused by a stronger pressing the gas pedal and an unnec-
essary use of lower gear (not shown here to save space).
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Figure 4. The speed tracking obtained via the FPD with the
adaptive penalizations. It can be seen that the controlled
speed values are lower than the the recommend ones.
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Figure 5. The fuel consumption obtained with the
help of the FPD with manually chosen penalizations
[0.1, 1, 0.1, 0.1, 0.1]. Notice the increased values of the ob-
tained fuel consumption.

5.2.3 Manual Setting of the Stabilized Adaptive
Penalizations

Here, the algorithm was run with the stabilized values of
the adaptive penalizations obtained in Section 5.2.1, set
manually. The best results among the presented ones were
achieved. The obtained fuel saving is 4.1%. Despite the
fuel saving is less than in the case with the automatic set-
ting, it is compensated by absence of sharp changes in the
driving style and keeping a not too slow speed. In the adap-
tive case described in Section 5.2.1 the controlled speed
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Figure 6. The speed tracking based on the FPD with manu-
ally chosen penalizations [0.1, 1, 0.1, 0.1, 0.1]. Notice that
the controlled values are higher than the recommended
ones.

was lower. Figure 7 demonstrates the obtained tracked
speed, which is close to the recommended one. The av-
erage tracked speed compared with the recommended one
can be found in Table 1. The improvement in the speed
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Figure 7. The recommended speed tracking based on the
FPD with manual setting of the penalizations taken from
the stabilized values of the adaptive ones. Notice that the
values of the controlled speed are close to the set-point.

tracking is explained by absence of the initial jumps in
the values of the adaptive penalizations. However, notice
that this choice would be hardly possible without usage of
the approach described in Sections 2 and 3. The obtained
pressing the gas pedal is similar to that shown in Figure 2
(top) with a bit smoother course. Table 2 summarizes the
resulting fuel savings in comparison with real data.



Table 1. Comparison of the average speeds

Average speed, km/h

Recommended 71.2
Adaptive case 65.2

Manual expert case 80.5
Manual use of stabilized adaptive case 70.8

Table 2. Fuel saving in comparison with real data

Fuel saving, %

Adaptive case 14.3
Manual expert case −16

Manual use of stabilized adaptive case 4.1

5.3 Discussion

To summarize the experimental part of the work, it can be
said that the results obtained by using the stabilized values
of the adaptive penalizations instead of the constant ones in
the manual setting were the best among the presented ones.
It means that these stabilized values can serve as a basis for
their further modification as needed. Usage of only auto-
matic settings of the penalizations can lead to a loss of the
main options to influence reaching the control aim. How-
ever, a wrong choice of penalizations can negatively effect
the control quality. It indicates that, depending on a specific
task, use of the stabilized (or tuned) values of the adaptive
penalizations can be the sensible compromise.

The difference among the speed tracking results in Ta-
ble 1 may seem insignificant. However, it shows that a
driving without any sharp changes of the speed, but with
a slight modifying in pressing the gas pedal, can bring fuel
saving.

6 Conclusions

The paper formulates a task of the fuel consumption opti-
mization for conventional vehicles as the stochastic servo
problem, where the optimization is dealt as dragging to the
zero set-point, while the recommended speed is used as the
set-point for the controlled speed. The main contribution of
the paper is to demonstrate that the theoretical servo prob-
lem solution can be applied simultaneously to the optimiza-
tion and the tracking problem. Illustrative experiments with
real data are provided.

A work planned in the near future will involve model-
ing and estimation of the recommended speed for unknown
route.
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[6] M. Kárný, J. Böhm, T. V. Guy, L. Jirsa, I. Nagy, P. Ne-
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